Ultra-accurate detection of rare mutations using duplex sequencing

Marek Cmero, Jafar Jabbari, Rory Bowden

Motivation

- Detecting rare single-nucleotide variants in high throughput sequencing data is challenging due to the inherent error rate.
- Duplex sequencing dramatically increases sequencing accuracy (up to 20,000x). For 1x diploid human genome coverage this is the difference between:
 - 6.4 million errors using standard NGS
 - 30 errors(!) using duplex sequencing
- We developed an optimised end-to-end protocol and computational pipeline to perform ultra-accurate duplex sequencing tailored to your experimental requirements.

How it works

- **a.** Double stranded duplex sequencing adapters contain a randomised duplex tag and an invariant spacer sequence.
- **b.** Adapters are ligated to DNA fragments, resulting in unique tags at each end of the molecule. Each strand is then PCR amplified.
- c. Reads containing unique α and β tags are grouped together (α - β and β - α 'families' represent different strands). Consensus sequences are obtained from single-strands and then both strands to obtain duplex consensus sequences.

Drop-out rate

Computational pipeline

- We have developed a robust, open-source pipeline built using Snakemake.
- Automatically handles dependencies and supports cluster execution (SLURM).
- Outputs a detailed QC reports and family counts.

Optimising the protocol

• Aimed to identify the optimum library preparation method, testing five endrepair treatments with two protocols in duplicate using E. coli.

- We found no significant difference in read quality, error rate or GC bias.
- Drop out rate was significantly lower and efficiency was sigificantly higher for the Nanoseq protocol.
 - **Drop out rate**: fraction of read family pairs missing one strand, beyond what would be expected with random sampling.
 - Efficiency: duplex bases / sequenced bases.
- We found no significant differences between nuclease units.

Variant detection sensitivity

- To test variant detection sensitivity, we performed spike-in experiments mixing two E. coli strains in different proportions.
- The number of detected variants showed good concordance with expectations.

Customising the assay

- We have developed a model to optimise duplex sequencing based on target allele frequency, capture region size and sample number.
- We can help taylor the assay to your experimental requirements.
- The table below shows some examples based on 95% confidence of detecting a variant (diploid organism) at the given allele frequency.

Target VAF	Capture size	Coverage (raw)	Coverage (duplex)	Sequenced bases	Reads*	Samples per lane*
0.01	2kb	9000x	300x	18Mb	60k	>33k
0.01	10kb	9000x	300x	90Mb	300k	>6.6k
0.01	5Mb	9000x	300x	45Gb	150m	13
0.01	37Mb (human exome)	9000x	300x	330Gb	1b	1
0.001	2kb	90,000x	3000x	180Mb	600k	>3.3k
0.001	10kb	90,000x	3000x	900Mb	3m	>660
0.001	5Mb	90,000x	3000x	450Gb	1.5b	1

Genomics Lab, Advanced Technology and Biology Division

Contact: bowden.r@wehi.edu.au
Project inquiries: tinyurl.com/ftr9mn77

Code: github.com/WEHIGenomicsRnD/duplex-seq-pipeline