
 

 

SVclone: inferring structural variant cancer cell fraction

Method overview
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SVclone pipeline

SV calls

• Determine SV directions
• Classify SV events

• Count supporting reads
• Count normal reads

• Apply filtering criteria
• Attach SCNA states

• Derive variant CCF
   from VAF, SCNA, purity
• Cluster variant CCFs

SV clonal 
composition

Annotate events
 

Count reads

Filter variants

Cluster

SNV calls
(optional)

Bam

SCNA

Inputs Processing Outputs

clonal SV

subclonal SV

• Assign non-clustered 
   vars to derived clusters

Post-assign

Met A

Met B
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• We applied SVclone to 2,788 whole tumour 
  genomes from the ICGC/TCGA pan-cancer 
  analysis of whole genomes (PCAWG) project
• We found a sample subset with an enrichment of 
  subclonal copy-number neutral rearrangements
  (SCNR)
• SCNR phenotype samples had decreased overall 
  survival

Structural variants are prominent drivers of tumourigenesis 
across many different cancer types, such as prostate and 
ovarian cancers. Methods exist that model the clonal 
architecture of tumours using SNVs or SCNAs, however, none 
exist that incorporate SV breakpoints. We present SVclone, a 
method for inferring the subclonal make up of tumour samples 
using SV calls obtained from whole-genome sequencing data. 

• We subsampled and merged clonal tumours 
  from the same patient in known proportions
• SVclone found the correct number of clusters 
  and their approximate proportions using SVs
• Results were comparable to Pyclone 
  (a representative SNV clustering method)

Survival curve comparing subclonal 
neutral rearrangement (SCNR), SV-
enriched and all other PCAWG samples


